午夜夜伦鲁鲁片免费无码-国产裸拍裸体视频在线观看-亚洲无码视频在线-学生妹亚洲一区二区-国产亚洲欧美日韩亚洲中文色

鑫景福致力于滿足“快速服務,零缺陷,輔助研發”PCBA訂購單需求。
PCBA方案設計
PCBA方案設計
Pay attention to EMI, EMC, SI, PI and other factors in PCB design
30Nov
Jeff 0條評論

Pay attention to EMI, EMC, SI, PI and other factors in PCB design

In PCB design, it is necessary to pay attention to EMI, EMC, SI, PI and other factors. In PCB design, anti-interference requirements should be fully considered and met. There are three basIC elements of interference:

(1) Interference source refers to the component, equipment or signal that generates interference. It is described in mathematical language as follows: du/dt, where di/dt is large, is the interference source. For example, lightning, relay, silicon controlLED rectifier, motor, high-frequency clock, etc. may become interference sources.

(2) Propagation path refers to the path or medium through which interference propagates from the interference source to the sensitive device. The typical interference propagation path is conducted through wires and radiated from space.

pcb board

(3) Sensitive devices refer to objects that are easy to be interfered with. Such as: A/D, D/A converter, microcontroller, digital IC, weak signal amplifier, etc.

The basic principle of anti-interference design is to restrain the interference source, cut off the interference propagation path and improve the anti-interference performance of the sensitive device. (SIMilar to the prevention of infectious diseases)

1 Suppress interference sources - Suppressing interference sources is to reduce du/dt, di/dt of interference sources as much as possible. This is the most priority and most important principle in anti-interference design, which can often achieve twice the result with half the effort. The du/dt of the interference source is reduced mainly by paralleling capacitors at both ends of the interference source. The di/dt of the interference source is reduced by adding inductance or resistance in series and freewheeling diode in the interference source circuit. Common measures to suppress interference sources are as follows:

(1) The relay coil is added with a freewheeling diode to eliminate the back EMF interference generated when the coil is disconnected. Only adding freewheeling diode will delay the disconnection time of the relay, and the relay can act more tiMES in a unit time after adding voltage stabilizing diode.

(2) Connect the spark suppression circuit at both ends of the relay contact in parallel (generally RC series circuit, with a resistance of K to tens of K and a capacitance of 0.01uF) to reduce the impact of electric spark.

(3) Add a filter circuit to the motor, and pay attention to the capacitor and inductor leads should be as short as possible.

(4) Each IC on the circuit board shall be connected to 0.01 in parallel μ F~0.1 μ F High frequency capacitor to reduce the influence of IC on power supply. Pay attention to the wiring of high-frequency capacitor. The wiring should be close to the power terminal and as short as possible. Otherwise, the equivalent series resistance of the capacitor will be increased, which will affect the filtering effect.

(5) Avoid 90 degree polyline during wiring to reduce high-frequency noise emission.

(6) The RC suppression circuit is connected at both ends of the thyristor in parallel to reduce the noise generated by the thyristor (when the noise is serious, the thyristor may be broken down). According to the propagation path of interference, it can be divided into conducted interference and radiated interference. The so-called conducted interference refers to the interference transmitted to the sensitive device through the wire. The frequency band of high-frequency interference noise is different from that of useful signal. The transmission of high-frequency interference noise can be cut off by adding a filter on the wire. Sometimes, isolation optocouplers can be added to solve this problem. Power supply noise is the most harmful, so special attention should be paid to handling. The so-called radiation interference refers to the interference transmitted to sensitive devices through space radiation. The general solution is to increase the distance between the interference source and the sensitive device, isolate them with a ground wire and add a shield on the sensitive device.

2 Common measures to cut off interference propagation path are as follows:

(1) Fully consider the influence of power supply on MCU. If the power supply is well done, the anti-interference of the whole circuit will be more than half solved. Many single chip computers are very sensitive to power supply noise. To reduce the interference of power supply noise to single chip computers, filter circuits or voltage regulators should be added to the power supply of single chip computers. For example, magnetic beads and capacitors can be used to form a π - shaped filter circuit. Of course, 100 Ω resistors can also be used to replace magnetic beads when conditions are not demanding.

(2) If the I/O port of the single chip microcomputer is used to control noise devices such as motors, isolation shall be added between the I/O port and the noise source (π filtering circuit shall be added). To control noise devices such as motor, isolation shall be added between I/O port and noise source (π filtering circuit shall be added).

(3) Pay attention to crystal oscillator wiring. The crystal oscillator shall be as close as possible to the pin of the microcontroller, and the clock area shall be isolated by the ground wire. The crystal oscillator shell shall be grounded and fixed. This measure can solve many difficult problems.

(4) The circuit board shall be reasonably partitioned, such as strong and weak signals, digital and analog signals. Try to keep the interference sources (such as motors and relays) away from the sensitive elements (such as SCM).

(5) The digital area shall be isolated from the analog area with a ground wire. The digital ground shall be separated from the analog ground, and finally connected to the power supply ground at one point. The wiring of A/D and D/A chips is also based on this principle. The manufacturer has considered this requirement when allocating the pin arrangement of A/D and D/A chips.

(6) The ground wire of single chip microcomputer and high-power device shall be grounded separately to reduce mutual interference. High power devices shall be placed on the edge of the circuit board as far as possible.

(7) Anti interference components such as magnetic beads, magnetic rings, power filters and shielding covers are used in the I/O ports, power lines, circuit board connecting lines and other key areas of the microcontroller, which can significantly improve the anti-interference performance of the circuit.

3 Improving the anti-interference performance of sensitive devices Improving the anti-interference performance of sensitive devices refers to the method of minimizing the pickup of interference noise from the sensitive devices and recovering from abnormal conditions as soon as possible. Common measures to improve the anti-interference performance of sensitive devices are as follows:

(1) The area of the loop shall be minimized during PCB wiring to reduce the induced noise.

(2) When wiring PCB, the power line and ground wire should be as thick as possible. In addition to reducing the voltage drop, it is more important to reduce the coupling noise.

(3) For the idle I/O port of the microcontroller, do not hang in the air, but ground or connect to the power supply. The idle terminals of other ICs are grounded or connected to the power supply without changing the system logic.

(4) The use of power supply monitoring and watchdog circuits for SCM, such as IMP809, IMP706, IMP813, X25043, X25045, can greatly improve the anti-interference performance of the entire circuit.

(5) On the premise that the speed can meet the requirements, the crystal oscillator of the single chip microcomputer shall be reduced as far as possible and the low-speed digital circuit shall be selected.

(6) IC devices shall be directly welded to the circuit board as much as possible, and IC sockets shall be used less.

PCB design software:

1. It is used to clearing all unused code spaces to "0", because this is equivalent to NOP, which can be returned when the program runs;

2. Add several NOPs before the jump instruction, with the same purpose as 1; 3. When there is no hardware WatchDog, software can be used to simulate the WatchDog to monitor the operation of the program;

4. When dealing with the parameter adjustment or setting of external devices, the parameters can be re sent regularly to prevent the external devices from making errors due to interference, so that the external devices can recover correctly as soon as possible;

5. For anti-interference in communication, the data check bit can be added, and the two out of three or three out of five strategy can be adopted; 6. When there are communication lines, such as I ^ 2C, three wire system, etc., in practice, we find that the data line, CLK line and INH line are normally set to high, and their anti-interference effect is better than low.

Hardware:

1. The part line of ground wire and power line must be important!

2. Decoupling of lines;

3. Separation of digital and analog ground;

4. Each digital element needs 104 capacitors between the ground and the power supply;

5. In relay applications, especially when there is a large current, to prevent the interference of relay contact sparks on the circuit, a 104 and a diode can be connected between the relay coils, and 472 capacitors can be indirectly connected between the contact and the normal starting point. The effect is good!

6. To prevent crosstalk of I/O ports, I/O ports can be isolated by diode isolation, gate circuit isolation, optocoupler isolation, electromagnetic isolation, etc;

7. Of course, the anti-interference of PCB multilayer board is certainly better than that of single panel, but the cost is several times higher.

8. Choosing a device with strong anti-interference ability is more effective than any other method, because the inherent shortcomings of the device are difficult to be remedied by external methods.

This paper mainly introduces EMI, EMC, SI, PI and other factors in PCB design

點擊
然后
聯系
主站蜘蛛池模板: 免费国产白丝喷水娇喘视频| 福利视频在线播放| 狠狠亚洲婷婷综合色香五月排名| 久久鬼色综合88久久| ass日本丰满熟妇pics| 欧美伊香蕉久久综合网99| 欧美伊香蕉久久综合网另类| 国产精品美女久久久久久福利| 男男啪啪激烈高潮cc漫画免费| 国精产品一品二品国精在线观看| 欧美xxxx做受欧美.88| 亚洲国产精品嫩草影院| 欧美乱妇高清无乱码在线观看| 婷婷丁香五月激情综合| 朝鲜女人大白屁股ass孕交| 色欲aⅴ亚洲情无码av蜜桃| 国产高清视频在线观看三区| 国产欧美精品aaaaaa片| 国产在线偷观看免费观看| 亚洲18禁| 国产探花在线精品一区二区| 精品国产一区二区三区无码| 国产精品嫩草影院入口一二三| 西西大胆午夜人体视频妓女| 亚洲人成色7777在线观看| 日韩欧美精品有码在线| 亚洲熟妇真实自拍另类| 日韩乱码人妻无码系列中文字幕| 国产精品第一区揄拍无码| 午夜亚洲国产理论片中文飘花 | 久久躁狠狠躁夜夜av| 国产亚州精品女人久久久久久 | 亚洲日韩v无码中文字幕| 国产大片内射1区2区| 国产成人毛片在线视频| 久久av高清无码| 国产情侣作爱视频免费观看| 成在线人免费视频| 免费观看性欧美大片无片| 少妇私密会所按摩到高潮呻吟| 亚洲天堂2017无码|