午夜夜伦鲁鲁片免费无码-国产裸拍裸体视频在线观看-亚洲无码视频在线-学生妹亚洲一区二区-国产亚洲欧美日韩亚洲中文色

鑫景福致力于滿足“快速服務,零缺陷,輔助研發”PCBA訂購單需求。
PCBA方案設計
PCBA方案設計
How to improve PCB EMI through component placement?
17Nov
Boy 0條評論

How to improve PCB EMI through component placement?

How to improve PCB EMI through component placement?
After designing the circuit structure and devICe position, PCB EMI control is very important to the overall design How to avoid interference in PCB electromagnetic switching power supply has become a topic of great concern for developers
The component layout practice has proved that even if the PCB schematic design is correct, the Printed Circuit Board Design is incorrect, which will adversely affect the reliability of electronic equipment For example, if two thin parallel lines of the printed circuit board are close together, the signal waveform will be delayed and reflective noise will be formed at the end of the transmission line The efficiency is reduced, so you should pay attention to the correct method when designing the printed circuit board
Each switching power supply has four current circuits:
(1) AC circuit of power switch;
(2) AC circuit of output rectifier;
(3) Current loop of input signal source;
(4) Output load current loop.
The input circuit charges the input capacitor through approximate DC current, and the filter capacitor is mainly used for broadband energy storage; SIMilarly, the output filter capacitor is also used to store high-frequency energy from the output rectifier and eliminate the DC energy of the output load circuit. The terminals of input and output filter capacitors are very important. The input and output current circuits can only be connected to the power supply from the terminals of the filter capacitor; If the connection between the input/output circuit and the power switch/rectifier circuit cannot be connected to the capacitor, connect the terminal directly, and the AC energy will be radiated to the environment through the input or output filter capacitor.
Circuit board


pcb board


The AC circuit of the power switch and the AC circuit of the rectifier contain high amplitude ladder current. The harmonIC components of these currents are very high. The frequency is much greater than the fundamental frequency of the switch. The peak amplitude can be up to 5 tiMES the amplitude of continuous input/output DC current. The transition time is usually about 50ns. These two circuits are most vulnerable to electromagnetic interference. These AC circuits must be arranged before other printed lines in the power supply. The three main components of each circuit are filter capacitor, power switch or rectifier, inductor or transformer. Place them next to each other and adjust the position of the components so that the current path between them is as short as possible. The best way to establish a switching power supply layout is similar to its electrical design. The optimal design process is as follows:
Place the transformer
Design power switch current circuit
Design current circuit of output rectifier
Control circuit connected to AC power circuit
When designing the input current source circuit and input filter and designing the output load circuit and output filter according to the functional unit of the circuit, the following principles must be met when arranging all components of the circuit:
(1) First, consider the PCB size When the PCB size is too large, the printed lines will be very long, the impedance will be increased, the noise resistance will be reduced, and the cost will be increased; If the PCB size is too SMAll, the heat dissipation is poor, and adjacent circuits are vulnerable to interference The best shape of the circuit board is rectangle, with the aspect ratio of 3:2 or 4:3. The distance between the components at the edge of the circuit board and the edge of the circuit board is usually not less than 2mm
(2) When placing the equipment, consider the subsequent welding, not too intensive.
(3) Centering on the core components of each functional circuit, the layout is carried out around them. The components shall be uniformly, orderly and compactly arranged on the PCB to minimize and shorten the leads and connections between components. The decoupling capacitor shall be as close to the VCC of the components as possible.
(4) For high frequency circuits, the distribution parameters between components must be considered. In general, circuits should be arranged in parallel as far as possible. In this way, it is not only beautiful, but also easy to install, weld and mass produce.
(5) Arrange the position of each functional circuit unit according to the circuit flow, so that the layout is convenient for signal flow, and the signals are kept in the same direction as far as possible.
(6) The first principle of layout is to ensure the wiring speed. When moving equipment, pay attention to the connection of flying wires, and put the equipment with connection relationship together.
(7) Reduce the loop area as much as possible to suppress the radiated interference of switching power supply

點擊
然后
聯系
主站蜘蛛池模板: 国产亚洲第一午夜福利合集| 99国产精品白浆在线观看免费| 97人妻无码免费专区| 国产成人av在线播放不卡| 亚洲最大的成人网| 久久精品国产99国产精品严洲| 男人边吃奶边做好爽视频| 国产精品成人网址在线观看| 亚洲国产精品一区二区www| 免费大黄网站| a 'v片欧美日韩在线| 精品国产制服丝袜高跟| 久久久久女人精品毛片| 99国产精品无码专区| 国产成人无码aⅴ片在线观看导航 18禁成年无码免费网站无遮挡 | 人妻夜夜爽天天爽欧美色院| 亚洲第一区欧美国产综合86| 精品国产自在久久现线拍| 亚洲人成人网站18禁| 精品久久人妻av中文字幕| 日本高清成本人视频一区| 人妻少妇精品视频无码综合 | 亚洲性啪啪无码av天堂| 国产成人精品999视频| 岛国av动作片在线观看| 性一交一乱一伦一色一情| 国产日韩一区二区三区在线观看| 亚洲成av人片在线观看www| 免费两性的视频网站| 久久99国产综合精品免费| 国产高清乱码女大生av| 中文字幕久久综合伊人| 老熟女重囗味hdxx70星空| 亚洲人成小说网站色| 最新av中文字幕无码专区| 无码人妻一区、二区、三区免费视频| 人妻熟人中文字幕一区二区| 亚洲国产精品无码久久电影| 亚洲女人自熨在线视频| 国产又粗又硬又大爽黄老大爷视频| 丰满熟妇乱子伦|