午夜夜伦鲁鲁片免费无码-国产裸拍裸体视频在线观看-亚洲无码视频在线-学生妹亚洲一区二区-国产亚洲欧美日韩亚洲中文色

鑫景福致力于滿足“快速服務,零缺陷,輔助研發”PCBA訂購單需求。
行業新聞
行業新聞
Boy 0條評論

Let's understand what is via on PCB

Let's understand what is via on PCB
Through hole is one of the important components of multilayer PCB, and the drilling cost usually accounts for 30% - 4.0% of the drilling cost In short, each hole on a PCB can be calLED a through-hole
1. From a functional perspective, vias can be divided into two categories:
1) It is used as the power connection between layers;
2.) Used for fixing or positioning equipment.
In terms of process, these vias are generally divided into three categories, namely blind vias, embedded vias and through vias.
The blind hole is located on the top and bottom surfaces of the printed circuit board. It has a certain depth and is used to connect the surface circuit and the bottom internal circuit. The depth of the hole usually does not exceed a certain ratio (diameter).
Embedded via refers to the connection hole located in the inner layer of the printed circuit board, whICh does not extend to the surface of the circuit board. The above two types of holes are located in the inner layer of the circuit board and are completed by the through hole forming process before lamination. During the formation of through-hole, several inner layers may overlap.
The third type is called through hole, which penetrates the whole circuit board and can be used for internal interconnection or as the installation location hole of components. Because the through-hole is easier to realize in the process of processing and the cost is lower, most printed circuit boards use it to replace the other two kinds of through-hole. Unless otherwise specified, through holes mentioned below are considered as through holes. From the design point of view, the through-hole is mainly composed of two parts, one is the middle drill hole, and the other is the pad area around the drill hole, as shown in the following figure. The size of these two parts determines the size of the through-hole. Obviously, in the design of high-speed and high-density PCB boards, designers always hope that the SMAller the through-hole is, the better, so as to leave more wiring space on the board. In addition, the smaller the through-hole, the smaller its parasitic capacitance, and the more suitable for high-speed circuits. However, the reduction of the hole size also brings new costs, and the size of the through hole cannot be infinitely reduced. It is limited by drilling and electroplating technology: the smaller the hole, the more drilling, the longer the time required, and the easier it is to deviate from the center; When the depth of the hole is more than 6 tiMES of the drilling diameter, uniform copper plating on the hole wall cannot be guaranteed. For example, the thickness (through hole depth) of an ordinary 6-layer PCB is about 50Mil, and the hole diameter provided by the PCB manufacturer can only reach 8Mil.
PCB board


pcb board


2. Parasitic capacitance of via The via itself has parasitic capacitance to ground. If it is known that the diameter of the isolation hole of the via on the ground plane is D2, the diameter of the via pad is D1, and the thickness of the PCB board is T, then the dielectric constant of the board substrate is Q, then the parasitic capacitance of the via is SIMilar to C=1.41 Q TD1/(D2-D1). The main effect of via parasitic capacitance on the circuit is to prolong the rise time of the signal and reduce the speed of the circuit.
For example, for a PCB with a thickness of 50Mil, if a through-hole with an inner diameter of 10Mil and a pad diameter of 20Mil is used, and the distance between the pad and the grounding copper area is 32Mil, the through-hole can be approximately calculated by the above formula. Parasitic capacitance roughness:
C=1.41x4.4x0.050x0.020/(0.032-0.020)=0.517pF,
The rise time change caused by this part of capacitance is:
T10-90=2.2C(Z0/2)=2.2x0.517x(55/2)=31.28ps。
From these values, it can be seen that although the influence of rise and delay caused by parasitic capacitance of a single via is not obvious, if vias are used for switching between layers for many times in the trajectory, the designer should still carefully consider.
3. Parasitic inductance of vias is similar to that of vias. Parasitic capacitance and inductance of vias exist together. In the design of high-speed digital circuits, the harm of via parasitic inductance is often greater than that of parasitic capacitance. Its parasitic series inductance will weaken the contribution of bypass capacitors and reduce the filtering effect of the entire power system. We can easily calculate the approximate parasitic inductance of vias with the following formula: L=5.08h [ln (4h/d)+1]
Where L is the inductance of the through-hole, h is the length of the through-hole, and d is the diameter of the central drilling hole. It can be seen from the formula that the diameter of the through-hole has little effect on the inductance, while the length of the through-hole has an effect on the inductance. Using the above example, the inductance of the through-hole can be calculated as: L=5.08x0.050 [ln (4x0.050/0.010)+1]=1.015nH. If the rise time of the signal is 1ns, its equivalent impedance is XL=L/T10-90=3.19 ?). When high frequency current passes through, this impedance can no longer be ignored. It should be noted that when connecting the power layer and the ground plane, the bypass capacitor needs to pass through two vias to multiply the parasitic inductance of the vias.
4. Through the above analysis of the parasitic characteristics of vias, we can see that in the design of high-Speed PCB boards, seEMIngly simple vias often bring a lot to circuit design. Negative impact. In order to reduce the adverse effects caused by via parasitic effects, you can try as much as possible in the design:
1) Considering the cost and signal quality, the through-hole with reasonable size is selected. For example, for 6-10 layer memory module PCB design, it is better to use 10/20Mil (drilling/pad) through-hole. For some high-density Small circuit boards, 8/18 mils can also be used. Through hole. Under current technical conditions, it is difficult to use smaller vias. For power or grounding vias, consider using a larger size to reduce impedance.
2) From the two formulas discussed above, it can be concluded that the use of thinner PCB is beneficial to reduce the two parasitic parameters of vias.
3) Try not to change the layer of the signal trace on the PCB, that is, try not to use unnecessary vias.
4) The pins for power and ground should be as close to the drill hole as possible. The leads between the through-hole and the pin should be as short as possible because they add inductance. At the same time, the power and grounding leads should be as thick as possible to reduce impedance.
5) Place some grounded vias near the vias where the signal changes layers to provide a short return path for the signal A large number of redundant grounding vias can even be placed on the PCB Of course, flexibility is also required in the design In the case that each layer has pads, we discussed the via model previously. Sometimes, we can reduce or even remove pads from some layers Especially in the case of very high via density, it may lead to the formation of circuit breakers on the copper layer To solve this problem, in addition to moving the position of vias, we can also consider placing vias on the copper layer The pad size is reduced to PCB board

點擊
然后
聯系
主站蜘蛛池模板: 亚洲国产精品成人精品无码区| 国产成人无码久久久精品一| 波多野结衣av一区二区三区中文| 五月天激情婷婷婷久久| 无码少妇精品一区二区免费| 蜜臀av无码精品人妻色欲| 起碰免费公开97在线视频| 国产乱人伦偷精品视频色欲| 天天做天天爱夜夜爽毛片毛片 | 欧美日韩精品成人网视频| 中文天堂在线最新版在线www| 久久精品私人影院免费看| 亚洲欧洲av综合一区二区三区| www.-级毛片线天内射视视| 97国产精东麻豆人妻电影| 波多野结衣初尝黑人| 波多野结衣av一区二区无码| 亚洲欧美综合国产不卡| 孩交精品xxxx视频视频| 中文字幕一区二区三区四区五区| 久久www成人免费网站| 国产午睡沙发被弄醒完整版| 国产猛烈高潮尖叫视频免费| 久久99国产精品久久| 亚洲s久久久久一区二区| 国产精品爽爽va在线观看网站| 亚洲一区在线日韩在线深爱 | 九九99热久久精品在线6| 亚洲国产精品隔壁老王| av在线网站无码不卡的| 97久久超碰成人精品网页| 黑人玩弄人妻1区二区| 无码人妻丰满熟妇区10p| 中日韩va无码中文字幕| 欧美成人精品三级在线观看| 精品久久久久久无码人妻蜜桃| 国产 麻豆 日韩 欧美 久久 | 玩弄人妻少妇500系列视频| 青青草av一区二区三区| 婷婷久久久亚洲欧洲日产国码av | 无码东京热一区二区三区|